A sphere is a 3 dimensional object modelling the surface of a ball. As such it is an extension of the concept of a 2 dimensional circle to 3D, though a circle can also exist in three dimensions. A sphere has a center and a radius. if the radius is 0 it is considered to be degenerate.
Arguments
- ...
Various input. See the Constructor section.
- x
A vector of spheres or an object to convert to it
Constructors
3 dimensional spheres
Providing 4 points will construct the unique sphere the passes through all 4 points (points must not be coplanar)
Providing 3 points will construct the smallest sphere that passes through all 3 points
Providing 2 points will construct the smallest sphere passing through both points
Providing a point and numeric will construct spheres centered on the point with a squared radius set to the numeric
Providing a circle will construct the diametral sphere of the circle
See also
Other Geometries:
circle()
,
direction()
,
iso_cube()
,
iso_rect()
,
line()
,
plane()
,
point()
,
ray()
,
segment()
,
tetrahedron()
,
triangle()
,
vec()
,
weighted_point()
Other Volumes:
iso_cube()
,
tetrahedron()
Examples
# Construction
p <- point(sample(8), sample(8), sample(8))
sphere(p, 4)
#> <3D euclid_spheres [8]>
#> [1] <x:1, y:3, z:6, r2:4> <x:7, y:8, z:8, r2:4> <x:5, y:1, z:5, r2:4>
#> [4] <x:2, y:2, z:1, r2:4> <x:8, y:4, z:7, r2:4> <x:4, y:5, z:3, r2:4>
#> [7] <x:6, y:7, z:4, r2:4> <x:3, y:6, z:2, r2:4>
sphere(p[1:2], p[3:4], p[5:6], p[7:8])
#> <3D euclid_spheres [2]>
#> [1] <x:4.41, y:4.46, z:6.19, r2:13.8> <x:-14.9, y:3.9, z:19.3, r2:624>
sphere(p[1:2], p[3:4], p[5:6])
#> <3D euclid_spheres [2]>
#> [1] <x:4.37, y:4.07, z:6.84, r2:13.2> <x:3.32, y:-4.2, z:13.2, r2:190>
sphere(p[1:2], p[3:4])
#> <3D euclid_spheres [2]>
#> [1] <x:3, y:2, z:5.5, r2:5.25> <x:4.5, y:5, z:4.5, r2:27.5>
circ <- circle(p[1], as_vec(p[2]), 6)
sphere(circ)
#> <3D euclid_spheres [1]>
#> [1] <x:1, y:3, z:6, r2:6>