Iso cubes are axis-aligned cuboids, i.e. a cube with faces parallel to the x, y, and z plane. Iso cuboids are the 3 dimensional version of iso rectangles and shares the feature that it can be constructed from bounding boxes (in 3D). An Iso cube is degenerate all its vertices are coplanar.
Arguments
- ...
Various input. See the Constructor section.
- x
A vector of iso cubes or an object to convert to it
Constructors
3 dimensional iso cubes
Providing a bbox will create iso cubes matching the bbox
Providing two points will create iso cubes with the points as diagonal opposite vertices
Providing 6 numeric will construct iso cubes with the given extent, with the numerics being interpreted in the following order: minimum x, minimum y, minimum z, maximum x, maximum y, and maximum z
See also
Other Geometries:
circle()
,
direction()
,
iso_rect()
,
line()
,
plane()
,
point()
,
ray()
,
segment()
,
sphere()
,
tetrahedron()
,
triangle()
,
vec()
,
weighted_point()
Other Volumes:
sphere()
,
tetrahedron()
Examples
# Construction
p <- point(sample(10, 2), sample(10, 2), sample(10, 2))
iso_cube(p[1], p[2])
#> <3D euclid_iso_cubes [1]>
#> [1] [<x:9, y:6, z:1>, <x:10, y:6, z:1>, <x:10, y:7, z:1>, <x:9, y:7, z:1>, <x:9, y:7, z:9>, <x:9, y:6, z:9>, <x:10, y:6, z:9>, <x:10, y:7, z:9>]
iso_cube(4, 10, 7, 16, -4, 0)
#> <3D euclid_iso_cubes [1]>
#> [1] [<x:4, y:10, z:7>, <x:16, y:10, z:7>, <x:16, y:-4, z:7>, <x:4, y:-4, z:7>, <x:4, y:-4, z:0>, <x:4, y:10, z:0>, <x:16, y:10, z:0>, <x:16, y:-4, z:0>]
s <- sphere(point(5, 9, 2), 13)
iso_cube(bbox(s))
#> <3D euclid_iso_cubes [1]>
#> [1] [<x:1.39, y:5.39, z:-1.61>, <x:8.61, y:5.39, z:-1.61>, <x:8.61, y:12.6, z:-1.61>, <x:1.39, y:12.6, z:-1.61>, <x:1.39, y:12.6, z:5.61>, <x:1.39, y:5.39, z:5.61>, <x:8.61, y:5.39, z:5.61>, <x:8.61, y:12.6, z:5.61>]